QUIZ 21: LESSON 28 NOVEMBER 9, 2018

Write legibly, clearly indicate the question you are answering, and put a box or circle around your final answer. If you do not clearly indicate the question numbers, I will take off points. Write as much work as you need to demonstrate to me that you understand the concepts involved. If you have any questions, raise your hand and I will come over to you.

Let R be the region in the first quandrant bounded by

$$
x=0, \quad y=0, \quad y=\sqrt{9-x^{2}} .
$$

1. $[2 \mathrm{pts}]$ Sketch a picture of the region R.

Solution: We see that $y=\sqrt{9-x^{2}}$ can be rewritten as:

$$
\begin{aligned}
y & =\sqrt{9-x^{2}} \\
\Rightarrow \quad y^{2} & =\left(\sqrt{9-x^{2}}\right)^{2} \\
\Rightarrow \quad y^{2} & =9-x^{2} \\
\Rightarrow \quad x^{2}+y^{2} & =9 \\
\Rightarrow \quad x^{2}+y^{2}=3^{2} &
\end{aligned}
$$

which is an equation of a circle of radius 3 centered at the origin. Since we are in the first quadrant, our region ought to be

This region may be described by either

$$
\left\{\begin{array} { l }
{ 0 \leq y \leq \sqrt { 9 - x ^ { 2 } } } \\
{ 0 \leq x \leq 3 }
\end{array} \quad \text { OR } \quad \left\{\begin{array}{l}
0 \leq x \leq \sqrt{9-y^{2}} \\
0 \leq y \leq 3
\end{array}\right.\right.
$$

2. [8 pts] The volume under $f(x, y)=e^{x^{2}}$ over the region R may be denoted by either

$$
\int_{0}^{3} \int_{0}^{\sqrt{9-x^{2}}} e^{x^{2}} d y d x
$$

or

$$
\int_{0}^{3} \int_{0}^{\sqrt{9-y^{2}}} e^{x^{2}} d x d y
$$

